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Abstract
We consider an exactly solvable discretization of the radial Schrödinger
equation of the hydrogen atom with l = 0. We first examine direct solutions of
the finite-difference equation and remark that the solutions can be analytically
continued into entire functions. A recursive expression for coefficients in the
solution is obtained. The next step is to identify the related three-term recursion
relation for Pollaczek polynomials. One-to-one correspondence between the
spectral and position representations facilitates the evaluation of Pollaczek
polynomials corresponding to the discrete spectrum. Finally, we obtain two
alternative and explicit expressions for the solutions of the original difference
equation.

PACS numbers: 02.30.Gp, 03.65.Ge

1. Introduction

The general solution of the Schrödinger equation, the corresponding energy levels and resulting
atomic shell model are taught to all students of quantum mechanics. Experimental and
theoretical studies of Rydberg atoms with a single electron have illuminated the wavefunctions
and the classical limit of quantum mechanics.

Here, we will concentrate on a specific aspect of theoretical studies, namely discretizations
and orthogonal polynomials. Orthogonal polynomials, namely Laguerre polynomials, are
already present in the solution of the Schrödinger equation. The subject of orthogonal
polynomials related to the hydrogen atom was reviewed in 1991 by Dehesa et al in [1].
Apart from polynomials present in the solutions, different kinds of discretizations induce
further orthogonal polynomials. The most obvious ones arise from direct discretizations of
the Schrödinger equation. Unfortunately, the explicit form of these polynomials is not usually
known. The continuum states and L2 discretizations of the continuum have been studied
already in the 1970s [2, 3]. Recently, a corresponding solution for the Dirac–Coulomb problem
was presented in [4]. In the context of condensed matter physics discretized Schrödinger
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equations can also be used as simple models of nanoscale systems [5] or related to the tight-
binding approximation [6].

In this paper, we show that the l = 0 states of the hydrogen atom can be exactly and
explicitly obtained for the symmetric discretization of the second-order derivative. First, this
is done by inserting an explicit ansatz in to the difference equation. Later on, we relate the
difference equation to the three-term recursion relation for Pollaczek polynomials with specific
parameters. Finally, a surprisingly simple and explicit expression is obtained for Pollaczek
polynomials and the corresponding solutions of the discretized Schrödinger equation.

2. Initial steps

Let us consider the radial Schrödinger equation for the hydrogen atom, i.e.,

−h̄2R′′(r)
2m

− h̄2R′(r)
mr

− e2R(r)

4πε0r
+

h̄2l(l + 1)R(r)

2mr2
= ER(r). (1)

In so-called natural units and for l = 0 the equation simplifies to

−u′′(r)
2

− u(r)

r
= Eu(r), (2)

where u(r) = rR(r). The simple eigenvalues and well-known solutions are expressible in
terms of associated Laguerre polynomials of the first kind

un(r) = rL1
n(2r/n) e−r/n = e−r/n

n∑
k=1

(−2/n)k−1

k!

(
n − 1
k − 1

)
rk, En = − 1

2n2
, (3)

where n = 1, 2, . . . . Next, we discretize this equation using the symmetric second-order
difference and obtain a finite-difference equation

−u(r − δ) − 2u(r) + u(r + δ)

2δ2
− u(r)

r
= E(δ)u(r). (4)

In the following section, we lift the restrictions that r and δ must lie on the positive axis
and allow complex values for both. Of course, any solution of equation (4) multiplied by
an arbitrary function with period δ is still a solution. Nevertheless, we will concentrate on
solutions and eigenvalues that tend to corresponding classical solutions in the limit δ → 0.

3. Solutions in coordinate representation

For nonzero values of δ we note that functions u(r) are also solutions of

u(r − δ)/2 + u(r + δ)/2 + δ2u(r)/r = µu(r), (5)

where µ = −δ2E + 1. This problem has been studied by Berezin in the case of purely
imaginary δ in [7]. We discovered the existence of an explicit solution in [8]. Here, a more
transparent and instructive derivation is given and we are able to obtain a new, recursive
formula for arbitrary terms in the solution.

Let us insert an ansatz

u(r) = eβr

n∑
k=1

αkr
k, (6)

into equation (5) and assume αk �= 0, which obviously corresponds to the solution un(r) in
equation (3). Now the equations must hold identically in r so each coefficient of rj must
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vanish. This yields
n∑

k=max(1,j−1)

γj,kαk = 0, γj+1,k := δk−j

(
k

j

)
(eβδ + (−1)k−j e−βδ)/2 − µγk,j + δ2γk,j+1

(7)

for j = 1, . . . , n + 1. The (n + 1)th equation requires that αn[cosh(δβ) − µ] = 0, so we
find µ = cosh(δβ). Next equation is then simplified to αn[nδ−1 sinh(δβ) + 1] = 0. These
equations now yield

µn(δ) =
√

1 + (δ/n)2, βn(δ) = −arsinh(δ/n)/δ (8)

in agreement with [8]. The classical limits En(δ) → −1/2n2 and βn(δ) → −1/n are also
satisfied. The remaining n − 1 equations can be used in order to solve the constants αk with
k = 1, . . . , n − 1. Note that the present derivation is both simpler and more exhaustive than
the previous one, which was based on an intelligent guess concerning the identity of terms in
the power series used. All eigenvalues and constants in the exponential part are identical to
those given in equation (8).

The general solution to equation (5) now becomes

u(δ)
n (r) =

(
n∑

k=1

�
(n)
k α

(n,δ)
k rk

)
exp(−rarsinh(δ/n)/δ), �

(n)
k := (−2/n)k−1

k!

(
n − 1
k − 1

)
.

(9)

The coefficients
{
α

(n,δ)
k

}
are of the form

α
(n,δ)
n−k = (1 + δ2/n2)(k−2k′)/2

k′∑
m=0

α
(n)
n−k,mδ2m, (10)

where α
(n)
k,0 = 1 and k′ = �k/2�, i.e., k/2 if k is even and (k − 1)/2 if k is odd. In addition, we

find

α
(n)
n−k,m = n−2m

( �k/2�
m

)
P(2m − 1)(n − k)!

(n − k + 2m − 1)!
, (11)

where P(2m − 1) is a polynomial of order 2m − 1 such that the coefficient of x2m−1 is equal
to unity. The general form of the leading terms is given by

α(n,δ)
n = 1 (12)

α
(n,δ)
n−1 =

√
1 + δ2/n2 (13)

α
(n,δ)
n−2 = 1 +

(3n − 1)δ2

3n2(n − 1)
(14)

α
(n,δ)
n−3 =

√
1 + δ2/n2

(
1 +

nδ2

n2(n − 2)

)
(15)

α
(n,δ)
n−4 = 1 +

2(n − 1)δ2

n2(n − 3)
+

(15n3 − 30n2 + 5n + 2)δ4

15n4(n − 1)(n − 2)(n − 3)
. (16)

Here n is an arbitrary state index, so once α
(n,δ)
n−k has been obtained, we have exact expressions

for k + 1 leading polynomial terms in any eigenfunction. We have now obtained explicit
expressions for α

(n,δ)
n−k when k � 125 and α

(n)
k,m for m � 23 with arbitrary k. In order to do
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this the underlying symmetries of the coefficients have to be exploited efficiently. Some of
this work was already done in [8], and one can find explicit values of terms up to k � 49 and
m � 10 in the addendum.

We proceed by noting that the innermost coefficients,
{
α

(n)
n−k,m

}
, yield a general solution

to the present difference equation. We define

Cn,k,l := (−n/2)kn!

k!l!(n − k − l)!

k∏
m=1

(n − m), (17)

and assume that all coefficients up to level α
(n)

n−(k−1),m are known. The requirement that the
coefficient for each power of δ cancels separately and some algebra yields explicit expressions
for the coefficients on the next level. For even values of k we find

α
(n)

n−k,m�1 =
(

−
k′−1∑

l=k′−m

Cn,2l,k+1−2lα
(n)
n−2l,l+m−k′

/
n +

k′−1∑
l=k′−m−1

Cn,2l+1,k−2lα
(n)
n−2l−1,l+m−k′+1

+
k′−1∑

l=k′−m

Cn,2l+1,k−2lα
(n)
n−2l−1,l+m−k′

/
n2

)/
(Cn,k,1/n − Cn,k,0). (18)

Correspondingly for odd values of k this yields

α
(n)

n−k,m�1 =
(

−
k′−1∑

l=k′−m

Cn,2l+1,k−2lα
(n)
n−2l−1,l+m−k′

/
n

+
k′∑

l=k′−m

Cn,2l,k+1−2lα
(n)
n−2l,l+m−k′

)/
(Cn,k,1/n − Cn,k,0). (19)

Here, α
(n)
k,0 = 1 and impossible coefficients are taken to be zero. The recursive equations do

yield the general solution, but the complexity of equations grows at an exponential rate. Thus,
it has been necessary to use even higher order symmetries to reduce the number of equations
and reach the present order k = 125. All calculations have been performed using the symbolic
mathematical software MATHEMATICA.

By restricting the allowed values of r to the set {kδ}∞k=1, we transform the problem into
an eigenvalue problem for an infinite tridiagonal matrix. By denoting un

k := u(δ)
n (kδ), we see

that the vector
{
un

k

}∞
k=1 is an eigenvector of the matrix

Hkk = δ/k, Hk,k+1 = Hk+1,k = 1/2, k = 1, 2, . . . (20)

corresponding to the eigenvalue µn =
√

1 + (δ/n)2. In addition, the exponential part of the
solution simplifies to

exp(−kδ arsinh(δ/n)/δ) = (√
1 + (δ/n)2 − δ/n

)k
. (21)

Results from numerical diagonalization agree with our results within numerical precision, as
long as convergence can be reached. For δ real and positive, normalized eigenvectors form an
orthonormal basis of �2.

The polynomial part of the eigenvectors define a discretized version of the corresponding
associated Laguerre polynomials L1

n. It is not clear whether a three-term recursion relation
exists for these polynomials.
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4. Solutions in spectral representation

The polynomial character of the exponential part shown in equation (21) contains both the
eigenvalue µ and the discretization parameter, which indicates that we should also examine the
problem with respect to the spectral variable. It turns out that the problem at hand corresponds
to a special case of the Pollaczek polynomials [9]. They satisfy the three-term recursion
relation

(j + 1)P λ
j+1(x; a, b) = 2[(j + λ + a)x + b]P λ

j (x; a, b) − (j + 2λ − 1)P λ
j−1(x; a, b), (22)

where j > 0, and initial conditions

P λ
0 (x; a, b) = 1, P λ

1 (x; a, b) = 2(λ + a)x + b. (23)

From equation (20) we obtain the recursion relation

(j + 1)uj+1 = 2[(j + 1)x − δ]uj − (j + 1)uj−1, j (=k − 1) > 0, (24)

and identify the parameters λ = 1, a = 0 and b = −δ. The discrete spectrum agrees with the
calculations performed above, i.e.,

xm =
√

1 + δ2/(m + 1)2, m = 0, 1, . . . . (25)

We have not yet studied the absolutely continuous spectrum in the range [−1, 1].
The explicit formula for Pollaczek polynomials reads

P λ
n (cos θ; a, b) =

n∑
k=0

(−λ + i
(θ))k(λ + i
(θ))n−k

k!(n − k)!
eiθ(2k−n), (26)

where x := cos θ,
(θ) = (a cos θ + b)/ sin θ and (A)k = A(A + 1) · · · (A + k − 1). The
orthogonality of Pollaczek polynomial is defined with respect to the interval [−1, 1], where
cos θ and sin θ are easily defined. Here, it would be tempting to use

sin θ = ±iδ/(m + 1), (27)

which yields simple terms to be inserted in equation (26). Nevertheless, the correct way to do
this as well as the corresponding interpretation are not obvious to us.

Below, we obtain a simpler way to express the polynomials Pj (x) := P 1
j (x; 0,−δ) for

x (>1) within the discrete spectrum (25). The results of the previous section show that we can
write

Pj (xm) = (xm − δ/(m + 1))j−mQm
j (xm), (28)

where Qm
j is a polynomial of degree m. By extracting the polynomials Qj , we can reconstruct

the corresponding Pollaczek polynomials. The next step is to evaluate polynomial relations
with respect to the index j , i.e., express the coefficients of the polynomials in as functions of
j . Thus, we write

Pj (xm) = (j + 1)

j∑
l=0

(
j

l

)
(xm)j−l

(
− δ

m + 1

)l

βm,l (29)

Qj(xm) = (j + 1)

m∑
l=0

(
m

l

)
(xm)m−l

(
− δ

m + 1

)l

γj,l . (30)

Both factors βj,l and γm,l appear to be quite complicated at first. Some general features can
be gleaned out, but the breakthrough is achieved in three steps. First is the observation that
γj,l = βj,l and the next amounts to the symmetry βj,l = βl,j . Finally, we find

βj,m =
min(j,m)∑

l=0

2l

l + 1

(
j

l

) (
m

l

)
. (31)
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This is the solution we have been looking for, explicitly,

Pj (xm) = (j + 1)

j∑
l=0

(xm)j−l

( −δ

m + 1

)l
[(

j

l

) min(m,l)∑
k=0

2k

k + 1

(
m

k

)(
l

k

)]

= (j + 1)

(
xm − δ

m + 1

)j−m m∑
l=0

(xm)m−l

( −δ

m + 1

)l

×
[(

m

l

) min(j,l)∑
k=0

2k

k + 1

(
j

k

) (
l

k

)]
. (32)

The first expression is more convenient for j � m, while the second is more compact for
j > m. Note that expressions are manifestly identical for j = m. The unnormalized, general
solution to the matrix eigenvalue problem (20) now simplifies to

un
k = Pk−1(xn−1), µn = xn−1. (33)

For real values of δ the solutions satisfy the orthogonality relation
∞∑

k=1

un
ku

n′
k ∝ δn,n′ (34)

and normalization requires that
∞∑

k=1

∣∣un
k

∣∣2 = 1. (35)

For small values of j or m we can be sure that Pollaczek polynomial does satisfy the
recursion relation. The solutions for spectral and coordinate representations are identical
because they are solutions to the same difference equation. Thus, in the limit δ → 0, the
Pollaczek polynomials tend to Laguerre polynomials with corresponding exponential parts,
even if the variables x and r do not coincide. The extraction process guarantees that each term
has been uniquely and correctly identified with corresponding powers of xm and −δ/(m + 1).
Next, we identified several sets of equations that these coefficients satisfy. This allowed us
to construct further coefficients in the series without redoing the extraction process. As the
final step, the explicit expressions were conjectured and verified against known results. The
general solution to equation (5) can be considered as a partially proven conjecture.1

5. Discussion

We have examined a simple discretization of the radial Schrödinger equation and shown that
it is exactly solvable. We were able to obtain an explicit solution both in terms of the radial
coordinate as well as the spectral variable, i.e., the eigenvalue. In future, one can simply use
the existing solution, e.g., in the form of a piece of computer code based on equation (32).
Simultaneously, we derived simple expressions to Pollaczek polynomials P 1

j (x; 0,−δ) for
the discrete mass points xm. Initial steps of the present approach are due to earlier research
on the discretized 1D harmonic oscillator, where we obtained asymptotical representations of
Mathieu functions [10]. Much work still remains and alternative approaches should be applied
to these problems.

As a final note, we state that the present discretization of the Schrödinger equation can
also be used when visualizing hydrogen radial wavefunctions. The possibility of comparing a

1 The required intermediate steps are available at request from Matias.Aunola@pvtt.mil.fi.
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numerical algorithm against exact results is not too common, especially if exact results are for
the algorithm itself. Of course, it is not possible to carry the recursion either to infinite order
or with infinite precision.
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